Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bacterial colonies growing on solid surfaces can exhibit robust expansion kinetics, with constant radial growth and saturating vertical expansion, suggesting a common developmental program. Here, we study this process forEscherichia colicells using a combination of modeling and experiments. We show that linear radial colony expansion is set by the verticalization of interior cells due to mechanical constraints rather than radial nutrient gradients as commonly assumed. In contrast, vertical expansion slows down from an initial linear regime even while radial expansion continues linearly. This vertical slowdown is due to limitation of cell growth caused by vertical nutrient gradients, exacerbated by concurrent oxygen depletion. Starvation in the colony interior results in a distinct death zone which sets in as vertical expansion slows down, with the death zone increasing in size along with the expanding colony. Thus, our study reveals complex heterogeneity within simple monoclonal bacterial colonies, especially along the vertical dimension. The intricate dynamics of such emergent behavior can be understood quantitatively from an interplay of mechanical constraints and nutrient gradients arising from obligatory metabolic processes.more » « less
-
Abstract We propose the use of low bit-depth Sigma-Delta and distributed noise-shaping methods for quantizing the random Fourier features (RFFs) associated with shift-invariant kernels. We prove that our quantized RFFs—even in the case of $$1$$-bit quantization—allow a high-accuracy approximation of the underlying kernels, and the approximation error decays at least polynomially fast as the dimension of the RFFs increases. We also show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy. Namely, the approximation error now decays exponentially as a function of the bits used. The quantization algorithms we propose are intended for digitizing RFFs without explicit knowledge of the application for which they will be used. Nevertheless, as we empirically show by testing the performance of our methods on several machine learning tasks, our method compares favourably with other state-of-the-art quantization methods.more » « less
-
Abstract In this paper we study supervised learning tasks on the space of probability measures. We approach this problem by embedding the space of probability measures into$$L^2$$ spaces using the optimal transport framework. In the embedding spaces, regular machine learning techniques are used to achieve linear separability. This idea has proved successful in applications and when the classes to be separated are generated by shifts and scalings of a fixed measure. This paper extends the class of elementary transformations suitable for the framework to families of shearings, describing conditions under which two classes of sheared distributions can be linearly separated. We furthermore give necessary bounds on the transformations to achieve a pre-specified separation level, and show how multiple embeddings can be used to allow for larger families of transformations. We demonstrate our results on image classification tasks.more » « less
An official website of the United States government
